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Perl at a Glance

• High-level language
• Popular
• Easy to use for processing outputs
• Good for web CGI scripts
• Interpreted language --- not high-

performance
• Remember to make your scripts 

executable (e.g., chmod u+x [scriptname])



Part 1: Variables and Printing



Printing in Perl

#!/usr/bin/perl

print “this is a test\n”;
# slash will escape quotes
print “I said \”hello!\” \n”;
print << “DOC”;
Any stuff between here & DOC will be printed
DOC



Scalar variables

• Perl doesn’t have strong typing like C/C++ for 
Fortran

• Perl tries to be smart about how to handle the 
type of a variable depending on context

• Can have scalar floating point numbers, 
integers, strings (in C, a string is not a 
fundamental scalar type)

• Scalars are designated by the $ symbol, e.g., $x



Scalar variable example
#!/usr/bin/perl

# initialize a string
$greeting = “hello”;

# initialize an integer 
$number = 5;

# initialize a floating point number
$energy = -10.823;

print “Let me say $greeting\n”;
print “There are $number problems on the test\n”;
print “The energy is $energy\n”;



Formatted output

• It is also possible to print according to a 
specified format, like the printf() function in 
C

#!/usr/bin/perl
$pi = 3.1415926;
printf “%6.3f\n”, $pi;
# prints pi in a field 6 characters long with
# 3 digits after the decimal, rounding up
#  3.142 



Array variables

• Unlike C or Fortran, an array in Perl can 
contain a mixture of any kinds of scalars

• Assigning an array to a scalar makes the 
scalar equal the length of the array 
(example of Perl trying to be smart)

• Arrays are designated by the @ symbol, 
e.g., @a



Array example
#!/usr/bin/perl

# set up an array
@array = (“hi”, 42, “hello”, 99.9);

# print the whole array
print “The array contains: @array\n”;

# access the 2nd element --- counting starts from 0
# note also we use scalar syntax ($) for a particular element
# because a single element is a scalar
print “The second element is $array[1]\n”;
# this prints 42 not “hi”

$length = @array;
print “There are $length elements in the array\n”;



Hash variables
• These contain key/value pairs and start with the % symbol, e.g., %h

#!/usr/bin/perl
%h = (“name”, “David”, “height”, 6.1, “degree”, “Ph.D.”);

# Note that each element of %h when accessed is a scalar, so
# use $ syntax to access an element, not %

print << “DOC”;
Name: $h{“name”}
Height: $h{“height”}
Degree: $h{“degree”}
DOC



Part 2: Operators



Arithmetic operators

• + : Addition
• - : Subtraction
• *  : Multiplication
• ** : Exponential
• /   : Division
• % : Modulus (remainder)
• ++: Increment 
• -- : Decrement



Arithmetic operators example
#!/usr/bin/perl

$x = 3;
$y = 5;

$z = $x + $y;
print "$x + $y = $z\n";
# 3 + 5 = 8

$z = ++$x + $y;
print "$x + $y = $z\n";
# 4 + 5 = 9

$x = 3;

# watch out for this one
$z = $x++ + $y;
print "$x + $y = $z\n";
# 4 + 5 = 8



Assignment operators

Operator Example Same as

= a = b a = b

+= a += b a = a + b

-= a -= b a = a – b

*= a *= b a = a * b

/= a /= b a = a / b

%= a %= b a = a % b



Logical operators

Operator Does
&& Logical AND
|| Logical OR
! Logical NOT

•These logical operators are very similar to those in C
•Used with operands that have boolean values TRUE 
•and FALSE, or which can be converted to these values; 
typically 1 means TRUE and 0 means FALSE
•Unlike in C, FALSE is not always evaluated as 0.  In the 
case of ! for NOT, !1 evaluates as a blank 



Example of logical operators
#!/usr/bin/perl

$x = 1; $y = 0;

# example of AND
$z = $x && $y;
print "$x && $y = $z\n";
# prints 1 && 0 = 0

# example of OR
$z = $x || $y;
print "$x || $y = $z\n";
# prints 1 || 0 = 1

# example of NOT
$z = !$y;
print "!$y = $z\n";
# prints !0 = 1

# example of NOT
$z = !$x;
print "!$x = $z\n";
# prints !1 = 0 ? No, actually it leaves $z as a blank!



Numerical comparison

• < = > returns -1, 
0, or 1 if the left 
side is less than, 
equal to, or 
greater than the 
right side

• Other operators 
return TRUE if 
the comparison is 
true, otherwise it 
will be blank!

Operator Comparison
== Is equal?
!= Not equal?
< = > Left-to-right comp
> Greater?
< Less than?
>= Greater or equal?
<= Less than or 

equal?



Numerical comparison example

#!/usr/bin/perl

$z = (2 != 3);
print "(2 != 3) = $z\n";
# prints (2 != 3) = 1

$z = (2 == 3);
print "(2 == 3) = $z\n";
# prints (2 == 3) =



String comparison
Operator Comparison/Action
eq is equal?
ne not equal?
gt greater than?
Lt less than?
cmp -1, 0, or 1, depending
. concatenation
x repeat
uc(string) convert to upper case
lc(string) convert to lower case
chr(num) get char for ASCII num
ord(char) get ASCII num of char

• Every individual character, like “A”, has a numerical code equivalent 
given by the ASCII table



String comparison example
#!/usr/bin/perl

$a = "hi";
$b = "hello";

$equal = $a eq $b;
print "$a eq $b = $equal\n";

$equal = $a eq $a;
print "$a eq $a = $equal\n";

$equal = $a ne $b;
print "$a ne $b = $equal\n";

$compare = $a cmp $b;
print "$a cmp $b = $compare\n";

$compare = $b cmp $a;
print "$b cmp $a = $compare\n";



String operators example
#!/usr/bin/perl

$a = "hi";
$b = "hello";

$c = $a . $b;
print "c = $c\n";
# prints "c = hihello"

$c = uc($a);
print "uc($a) = $c\n";
# prints "uc(hi) = HI"

$c = $a x 5;
print "$a x 5 = $c\n";
# prints "hi x 5 = hihihihihi"



The range operator

• The range operator, .., fills in a range of values 
in between the endpoints

• @numbers = (1..10) gives @numbers = (1, 2, 3, 
4, 5, 6, 7, 8, 9, 10)

• @letters = (“a”..”z”) gives an array with all letters 
“a” through “z”

• A “for” statement can also use a range operator 
to loop through a range, e.g., 
“for (1..10) { print “hi” };” would print “hi” 10 times 



Math functions
• PERL has several built-in mathematical functions

Function Operation

abs(x) return absolute value of x

sin(x) return sine of x

cos(x) return cosine of x

hex(string) decimal value of hexadecimal string

oct(string) decimal value of octal string

sqrt(x) return square root of x



Part 3: Loops and Conditions



IF statements
• If the test expression is true, then execute the statement(s) following

#!/usr/bin/perl
$major = “chemistry”;

if ($major eq “chemistry”) { 
print “Welcome, chemistry student!\n”;

}
if ($major ne “chemistry”) {
print “You’re not a chemistry student.\n”;
print “Why not?\n”;

}
# note: need the curly braces



IF/ELSE statements
• Sometimes more convenient than just “IF” statements

#!/usr/bin/perl

$major = "chemistry";

if ($major eq "chemistry") {
print "Welcome, chemistry student!\n";

}
else {
print "You're not a chemistry student.\n";
print "Why not?\n";

}
# note: need the curly braces



ELSIF statements
• “elsif” is read as “else if”.  It’s an “else” that has an “if” condition attached to it; useful 

in picking one possibility out of a list of several

#!/usr/bin/perl

$grade = "F";

if ($grade eq "A") {
print "Excellent!\n";

}
elsif ($grade eq "B") {

print "Good work.\n";
}
elsif ($grade eq "C") {

print "Needs improvement.\n";
}
else {

print "I suggest you start coming to office hours.\n";
}



FOR loop
• Loop (repeatedly execute a statement block) until a 

given condition is met
• for (initializer, test, increment/decrement) {statement 

block}

for ($i=0; $i<3; $i++) {
print "i = $i\n";

}
# prints the following:
# i = 0
# i = 1
# i = 2



WHILE loops
• Execute the statement block while a certain condition holds; watch 

out to avoid infinite loops!

# important to initialize variable before loop!
$i=0;

while ($i<3) {
print "i = $i\n";
$i++;               # need this line to avoid infinite loop!

}
# prints the following:
# i = 0
# i = 1
# i = 2



DO/WHILE loops
• Like “WHILE” but always executes at least once; test is made at end not 

beginning of statement block
• There is a related “DO/UNTIL” loop

# important to initialize variable before loop!
$i=0;

do {
print "i = $i\n";
$i++;               # need this line to avoid infinite loop!

}
while ($i < 3);
# prints the following:
# i = 0
# i = 1
# i = 2



NEXT statement
• Skip to next iteration of a loop
• Equivalent to C’s “continue” statement

for ($i=0; $i<3; $i++)
{
if ($i == 1) { next }
print "i = $i\n";

}
# prints the following:
# i = 0
# i = 2



LAST statement
• Skip out of loop and exit it completely
• Equivalent to C’s “break” statement

for ($i=0; $i<3; $i++)
{
if ($i == 1) { last }
print "i = $i\n";

}
# prints the following:
# i = 0



Part 4: Arrays



Working with arrays

• Elements are accessed by number, 
starting from 0; can use -1 to access the 
last element in the array

• A particular element of an array is 
accessed using $ syntax not @ (because 
each element is a scalar, not an array)

• To make an array of strings, the function 
qw() is a shortcut to put a list of items in 
quotes



Array example
#!/usr/bin/perl

@names1 = ("David", "Daniel", "Justin");
@names2 = qw(Mutasem Micah Arteum);     # avoid annoying quotes

print "@names1\n";
# prints David Daniel Justin

print "@names2\n";
# prints Mutasem Micah Arteum

print "$names1[1]\n";
# prints Daniel, *not* David!

print “$names1[-1]\n”;
# prints last element, Justin



Converting scalars to arrays

• Can take a scalar (like a text string) and 
split it into components (like individual 
words) and place them in an array

• Most frequently split using spaces or 
commas

• Use the split() function



Scalars to arrays example
#!/usr/bin/perl

$string = "We are learning PERL";
@words = split(/ /,$string);

print "@words\n";
# prints "We are learning PERL"

print "$words[1]\n";
# prints "are"

$prime_list = "1,3,5,7,11";
@primes = split(/,/,$prime_list);

print "@primes\n";
# prints 1 3 5 7 11



Going through all elements
• “foreach” statement creates a loop that goes through all the elements in an 

array

#!/usr/bin/perl

@tasks = qw(plan simulation analysis);

$i=0;
foreach $task(@tasks) {
print "Task $i: $task\n";
$i++;

}

# prints the following:
# Task 0: plan
# Task 1: simulation
# Task 2: analysis



Copying parts of arrays
#!/usr/bin/perl

@tasks = qw(plan simulation analysis);
@priorities = @tasks[0,1];

print "Tasks are: @tasks\n";
print "Priorities are: @priorities\n";

# prints the following:
# Tasks are: plan simulation analysis
# Priorities are: plan simulation

$tasks[1] = "computation";  #changes @tasks not @priorities
print "Tasks are: @tasks\n";
print "Priorities are: @priorities\n";

# prints the following:
# Tasks are: plan computation analysis
# Priorities are: plan simulation



shift/unshift and push/pop functions

• shift() deletes the first element of the array 
and returns that value

• unshift() adds a new element or elements 
to the beginning array

• pop() deletes the last element of the array 
and returns that value

• push() adds an element or elements to the 
end of the array



Example of shift/unshift
#!/usr/bin/perl

@grades = (100, 90, 89);
print "Grades are: @grades\n";
# Grades are: 100, 90, 89

unshift(@grades,54);
print "Grades are: @grades\n";
# Grades are: 54, 100, 90, 89

$deleted = shift(@grades);
print "Deleted the grade $deleted\n";
print "Grades are now: @grades\n";
# Deleted the grade 54
# Grades are now: 100, 90, 89



Other array tricks
• Combine two arrays like

@new = (@arr1, @arr2);
• Replace an individual element like

$arr[0] = 42;
• Get the length of an array like

$len = @array;
• Take a “slice” (subset) of an array

@subset = @arr[0,5];
• Get the reverse of an array

@rev = reverse(@arr);



Sorting
• Can sort the elements of an array alphabetically; will not change the original 

array but can assign result to a new array.  $a and $b are temp strings.

@students = qw(Robert Amanda Chris Jan);
print "students are: @students\n";
# students are: Robert Amanda Chris Jan

@students1 = sort{$a cmp $b}@students;
@students2 = sort{$b cmp $a}@students;

print "students1 : @students1\n";
# students1 : Amanda Chris Jan Robert
print "students2 : @students2\n";
# students2 : Robert Jan Chris Amanda

• Could do similar thing with numbers but using {$a $b} for comparison



Part 5: Hashes



Hashes
• Key-value pairs; hash variables start with % symbol
• Very useful for keeping data from HTML forms
• Access a value by giving its associated key in curly 

brackets; the accessed value is a scalar, not a hash, so 
use $ in front

%hash = qw(first David last Sherrill);
# need slash below to distinguish the inner quotes
# in the hash lookup
# from the outer quotes of the print statement
print "first name: $hash{\"first\"}\n";
# first name: David



Slice of a hash
• Can take a slice (subset) of hash values, similar to taking 

a slice of an array.  The result is an array of hash values.
• Specify the key names of the desired elements, in 

quotes, separated by commas.  Taking an array, use 
array syntax.

%hash = qw(first David last Sherrill job Professor);

@names = @hash{"first","last"};
print "names: @names\n";
# names: David Sherrill



Getting all keys or all values
• Can get a list of all keys or all values in a hash using the keys() and 

values() functions, which take the name of the hash as the argument
• Warning: the order of the keys/values is not necessarily the same as 

the original ordering

%hash = qw(first David last Sherrill job Professor);

@karr = keys(%hash);
print "keys: @karr\n";
# keys: first last job

@varr = values(%hash);
print "values: @varr\n";
# values: David Sherrill Professor



Looping through hash elements
• Can loop through the elements of a hash using the “foreach” 

statement; like a “for” loop but goes through an array of elements
• Similar to “foreach” in shells like tcsh
• %hash = qw(first David last Sherrill job Professor);

foreach $i (keys(%hash))
{
# note: below we do $hash not %hash
print "The key is $i and the value is $hash{$i}\n";

}

# The key is first and the value is David
# The key is last and the value is Sherrill
# The key is job and the value is Professor



Deleting key/value pairs
• Can delete a pair using the “delete” statement followed by the value (a 

scalar) to delete

%hash = qw(first David last Sherrill job Professor);

delete $hash{"job"};

foreach $i (keys(%hash))
{
# note: below we do $hash not %hash
print "The key is $i and the value is $hash{$i}\n";

}

# The key is first and the value is David
# The key is last and the value is Sherrill



Does a key exist?
• Can check if a key exists in a hash using the “exist” keyword; returns 1 if exists, 

“blank” if not (can be converted to 0 when necessary)

%hash = qw(first David last Sherrill);

$check_first = exists $hash{"first"};
$check_age = exists $hash{"age"};

# "false" doesn't show up as a 0 unless "forced"
$num = ( $check_age == 0 ) ? 0 : 1;

print "Does first exist? $check_first\n";
# Does first exist? 1

print "Does age exist? $check_age\n";
# Does age exist?

print "variable num = $num\n";
# variable num = 0



Part 6: Text Files



Reading a text file
• Use “open” and “close” functions
• Need a “file handle” to represent the file
• Use equality operator to read a line or an array of (all) 

lines

# Note: file random.txt must be in same directory, or else
# must specify an absolute path

open(TXT, "<random.txt");    # open the file for reading
$line = <TXT>;                      # get the first line (note scalar)
close(TXT);                           # close file again

print "The first line of the file is: $line\n";



Reading the whole file

• To get all the lines, simply assign 
<filehandle> to an array variable

open(TXT, "<random.txt");    # open the file for reading
@lines = <TXT>;                  # get all the lines
close(TXT);                           # close file again

print "The file contains:\n";
print @lines;



Writing to a text file

• Use the > symbol in front of the filename 
to write, instead of < to read

open(TXT, ">written.txt");     # open the file for writing
print TXT "hello, testing!\n"; # write a line
print TXT "end of test.\n";    # write another line
close(TXT);                          # close file again



Appending to a text file

• To append (add to the end of an existing 
file), use the >> symbol before the 
filename instead of >

open(TXT, ">>written.txt"); # open the file for writing
print TXT "Add a line!\n";   # write an additional line
close(TXT);                        # close file again



Exclusive access

• Errors or unexpected behavior might result 
if two programs tried to write to the same 
file at the same time

• Can prevent this by putting a “lock” on the 
file, preventing other programs from 
accessing the file until the first program 
has completed the essential operation



File locking example
#!/usr/bin/perl

# Note: file testfile.txt must be in same directory, or else
# must specify an absolute path

open(FP, ">testfile.txt"); # open the file for writing
# note - not all platforms support flock()
flock(FP, 2);              # lock the file
print FP "Hello!\n";       # write a line
flock(FP, 8);              # release the file
close(FP);                 # close file again



Detecting read/write errors
• If a file operation has an error, it typically returns an error message 

to the $! variable
• This example previews subroutines

open(FP, "<junk.txt") || &pr_error($!);
@lines = <FP>;
close(FP);

foreach $line(@lines)
{
print "$line";

}

sub pr_error
{

print "Received error on opening file.\n";
print "Error message: $_[0]\n";
exit;

}



Renaming and deleting files

• To rename a file
rename(“old_filename”, “new_filename”);

• To delete a file 
(don’t use unless you’re sure!)
unlink(“file_to_delete”);



File status checks

Operator Operation

-e Does file exist?

-d Is the “file” a directory?

-r Is the file readable?

-w Is the file writable?

-x Is the file executable?



Status check example
$file = "crazy_file.txt";

# Another example of TRUE=1, FALSE=blank
# Will print blank if file doesn't exist
$e = (-e $file);
print "Variable \$e = $e\n";

# The following ? : logic still works though
print "The file $file ";
print $e ? "exists\n" : "does not exist\n";



Files in a directory
• Can get all the files in a given directory using the 

opendir() function

opendir(CDIR, ".");                       # . gives current directory
@filenames = readdir(CDIR);      # get all the filenames
@filenames = sort(@filenames); # sort them!
closedir(CDIR);

foreach $filename(@filenames)
{
print "$filename\n";

}



Selecting certain filenames
• Can use the grep() function, in conjunction with 

a “regular expression” (see later), to select only 
certain filenames

opendir(CDIR, ".");            # . gives current directory
# get only filenames ending in .txt; escape the . character
@filenames = grep( /\.txt/, readdir(CDIR));
@filenames = sort(@filenames); # sort them!
closedir(CDIR);

foreach $filename(@filenames)
{

print "$filename\n";
}



Setting permissions

• Can set the file permissions on a file or 
directory using the chmod() function which 
works like the UNIX command

Permissions Owner Group Others

0777 rwx rwx rwx

0755 rwx r-x r-x

0644 rw- r-- r--



chmod() example
if (-e "chmodtest")
{
chmod(0755, "chmodtest") || &pr_error($!);

}
else
{
print "Can't find file chmodtest\n";

}

sub pr_error
{
print "Error: $_[0]\n"; exit;

}



Making and deleting directories

• Make a directory (needs UNIX 
permissions code)
mkdir(“subdir”, 0755);

• Delete a directory
rmdir(“subdir”);

• Best to check for errors, e.g.,
rmdir(“subdir”) || &pr_error($!);



Changing working directory

• The script usually assumes it is working in the 
same directory it resides in

• This means files in other locations need to be 
addressed with full or relative paths

• Instead, can tell PERL to use a different 
“working” directory and then use “local” 
filenames

• chdir(“../docs”); # go back up to the “docs” 
directory and do all subsequent work in there
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