
Perl Workshop

C. David Sherrill
Center for Computational Molecular 

Science & Technology
Georgia Institute of Technology



References

• These notes follow the progression given 
by the introductory book, “PERL in easy 
steps,” by Mike McGrath (Computer Step, 
Warwickshire, UK, 2004)

• Another good book is “Learning PERL,” by 
Randal L. Schwartz, Tom Phoenix, and 
Brian D. Foy (O’Reilly, 2005)

• See also www.perl.org and www.perl.com

http://www.perl.org/
http://www.perl.com/


Perl at a Glance

• High-level language
• Popular
• Easy to use for processing outputs
• Good for web CGI scripts
• Interpreted language --- not high-

performance
• Remember to make your scripts 

executable (e.g., chmod u+x [scriptname])



Part 1: Variables and Printing



Printing in Perl

#!/usr/bin/perl

print “this is a test\n”;
# slash will escape quotes
print “I said \”hello!\” \n”;
print << “DOC”;
Any stuff between here & DOC will be printed
DOC



Scalar variables

• Perl doesn’t have strong typing like C/C++ for 
Fortran

• Perl tries to be smart about how to handle the 
type of a variable depending on context

• Can have scalar floating point numbers, 
integers, strings (in C, a string is not a 
fundamental scalar type)

• Scalars are designated by the $ symbol, e.g., $x



Scalar variable example
#!/usr/bin/perl

# initialize a string
$greeting = “hello”;

# initialize an integer 
$number = 5;

# initialize a floating point number
$energy = -10.823;

print “Let me say $greeting\n”;
print “There are $number problems on the test\n”;
print “The energy is $energy\n”;



Formatted output

• It is also possible to print according to a 
specified format, like the printf() function in 
C

#!/usr/bin/perl
$pi = 3.1415926;
printf “%6.3f\n”, $pi;
# prints pi in a field 6 characters long with
# 3 digits after the decimal, rounding up
#  3.142 



Array variables

• Unlike C or Fortran, an array in Perl can 
contain a mixture of any kinds of scalars

• Assigning an array to a scalar makes the 
scalar equal the length of the array 
(example of Perl trying to be smart)

• Arrays are designated by the @ symbol, 
e.g., @a



Array example
#!/usr/bin/perl

# set up an array
@array = (“hi”, 42, “hello”, 99.9);

# print the whole array
print “The array contains: @array\n”;

# access the 2nd element --- counting starts from 0
# note also we use scalar syntax ($) for a particular element
# because a single element is a scalar
print “The second element is $array[1]\n”;
# this prints 42 not “hi”

$length = @array;
print “There are $length elements in the array\n”;



Hash variables
• These contain key/value pairs and start with the % symbol, e.g., %h

#!/usr/bin/perl
%h = (“name”, “David”, “height”, 6.1, “degree”, “Ph.D.”);

# Note that each element of %h when accessed is a scalar, so
# use $ syntax to access an element, not %

print << “DOC”;
Name: $h{“name”}
Height: $h{“height”}
Degree: $h{“degree”}
DOC



Part 2: Operators



Arithmetic operators

• + : Addition
• - : Subtraction
• *  : Multiplication
• ** : Exponential
• /   : Division
• % : Modulus (remainder)
• ++: Increment 
• -- : Decrement



Arithmetic operators example
#!/usr/bin/perl

$x = 3;
$y = 5;

$z = $x + $y;
print "$x + $y = $z\n";
# 3 + 5 = 8

$z = ++$x + $y;
print "$x + $y = $z\n";
# 4 + 5 = 9

$x = 3;

# watch out for this one
$z = $x++ + $y;
print "$x + $y = $z\n";
# 4 + 5 = 8



Assignment operators

Operator Example Same as

= a = b a = b

+= a += b a = a + b

-= a -= b a = a – b

*= a *= b a = a * b

/= a /= b a = a / b

%= a %= b a = a % b



Logical operators

Operator Does
&& Logical AND
|| Logical OR
! Logical NOT

•These logical operators are very similar to those in C
•Used with operands that have boolean values TRUE 
•and FALSE, or which can be converted to these values; 
typically 1 means TRUE and 0 means FALSE
•Unlike in C, FALSE is not always evaluated as 0.  In the 
case of ! for NOT, !1 evaluates as a blank 



Example of logical operators
#!/usr/bin/perl

$x = 1; $y = 0;

# example of AND
$z = $x && $y;
print "$x && $y = $z\n";
# prints 1 && 0 = 0

# example of OR
$z = $x || $y;
print "$x || $y = $z\n";
# prints 1 || 0 = 1

# example of NOT
$z = !$y;
print "!$y = $z\n";
# prints !0 = 1

# example of NOT
$z = !$x;
print "!$x = $z\n";
# prints !1 = 0 ? No, actually it leaves $z as a blank!



Numerical comparison

• < = > returns -1, 
0, or 1 if the left 
side is less than, 
equal to, or 
greater than the 
right side

• Other operators 
return TRUE if 
the comparison is 
true, otherwise it 
will be blank!

Operator Comparison
== Is equal?
!= Not equal?
< = > Left-to-right comp
> Greater?
< Less than?
>= Greater or equal?
<= Less than or 

equal?



Numerical comparison example

#!/usr/bin/perl

$z = (2 != 3);
print "(2 != 3) = $z\n";
# prints (2 != 3) = 1

$z = (2 == 3);
print "(2 == 3) = $z\n";
# prints (2 == 3) =



String comparison
Operator Comparison/Action
eq is equal?
ne not equal?
gt greater than?
Lt less than?
cmp -1, 0, or 1, depending
. concatenation
x repeat
uc(string) convert to upper case
lc(string) convert to lower case
chr(num) get char for ASCII num
ord(char) get ASCII num of char

• Every individual character, like “A”, has a numerical code equivalent 
given by the ASCII table



String comparison example
#!/usr/bin/perl

$a = "hi";
$b = "hello";

$equal = $a eq $b;
print "$a eq $b = $equal\n";

$equal = $a eq $a;
print "$a eq $a = $equal\n";

$equal = $a ne $b;
print "$a ne $b = $equal\n";

$compare = $a cmp $b;
print "$a cmp $b = $compare\n";

$compare = $b cmp $a;
print "$b cmp $a = $compare\n";



String operators example
#!/usr/bin/perl

$a = "hi";
$b = "hello";

$c = $a . $b;
print "c = $c\n";
# prints "c = hihello"

$c = uc($a);
print "uc($a) = $c\n";
# prints "uc(hi) = HI"

$c = $a x 5;
print "$a x 5 = $c\n";
# prints "hi x 5 = hihihihihi"



The range operator

• The range operator, .., fills in a range of values 
in between the endpoints

• @numbers = (1..10) gives @numbers = (1, 2, 3, 
4, 5, 6, 7, 8, 9, 10)

• @letters = (“a”..”z”) gives an array with all letters 
“a” through “z”

• A “for” statement can also use a range operator 
to loop through a range, e.g., 
“for (1..10) { print “hi” };” would print “hi” 10 times 



Math functions
• PERL has several built-in mathematical functions

Function Operation

abs(x) return absolute value of x

sin(x) return sine of x

cos(x) return cosine of x

hex(string) decimal value of hexadecimal string

oct(string) decimal value of octal string

sqrt(x) return square root of x



Part 3: Loops and Conditions



IF statements
• If the test expression is true, then execute the statement(s) following

#!/usr/bin/perl
$major = “chemistry”;

if ($major eq “chemistry”) { 
print “Welcome, chemistry student!\n”;

}
if ($major ne “chemistry”) {
print “You’re not a chemistry student.\n”;
print “Why not?\n”;

}
# note: need the curly braces



IF/ELSE statements
• Sometimes more convenient than just “IF” statements

#!/usr/bin/perl

$major = "chemistry";

if ($major eq "chemistry") {
print "Welcome, chemistry student!\n";

}
else {
print "You're not a chemistry student.\n";
print "Why not?\n";

}
# note: need the curly braces



ELSIF statements
• “elsif” is read as “else if”.  It’s an “else” that has an “if” condition attached to it; useful 

in picking one possibility out of a list of several

#!/usr/bin/perl

$grade = "F";

if ($grade eq "A") {
print "Excellent!\n";

}
elsif ($grade eq "B") {

print "Good work.\n";
}
elsif ($grade eq "C") {

print "Needs improvement.\n";
}
else {

print "I suggest you start coming to office hours.\n";
}



FOR loop
• Loop (repeatedly execute a statement block) until a 

given condition is met
• for (initializer, test, increment/decrement) {statement 

block}

for ($i=0; $i<3; $i++) {
print "i = $i\n";

}
# prints the following:
# i = 0
# i = 1
# i = 2



WHILE loops
• Execute the statement block while a certain condition holds; watch 

out to avoid infinite loops!

# important to initialize variable before loop!
$i=0;

while ($i<3) {
print "i = $i\n";
$i++;               # need this line to avoid infinite loop!

}
# prints the following:
# i = 0
# i = 1
# i = 2



DO/WHILE loops
• Like “WHILE” but always executes at least once; test is made at end not 

beginning of statement block
• There is a related “DO/UNTIL” loop

# important to initialize variable before loop!
$i=0;

do {
print "i = $i\n";
$i++;               # need this line to avoid infinite loop!

}
while ($i < 3);
# prints the following:
# i = 0
# i = 1
# i = 2



NEXT statement
• Skip to next iteration of a loop
• Equivalent to C’s “continue” statement

for ($i=0; $i<3; $i++)
{
if ($i == 1) { next }
print "i = $i\n";

}
# prints the following:
# i = 0
# i = 2



LAST statement
• Skip out of loop and exit it completely
• Equivalent to C’s “break” statement

for ($i=0; $i<3; $i++)
{
if ($i == 1) { last }
print "i = $i\n";

}
# prints the following:
# i = 0



Part 4: Arrays



Working with arrays

• Elements are accessed by number, 
starting from 0; can use -1 to access the 
last element in the array

• A particular element of an array is 
accessed using $ syntax not @ (because 
each element is a scalar, not an array)

• To make an array of strings, the function 
qw() is a shortcut to put a list of items in 
quotes



Array example
#!/usr/bin/perl

@names1 = ("David", "Daniel", "Justin");
@names2 = qw(Mutasem Micah Arteum);     # avoid annoying quotes

print "@names1\n";
# prints David Daniel Justin

print "@names2\n";
# prints Mutasem Micah Arteum

print "$names1[1]\n";
# prints Daniel, *not* David!

print “$names1[-1]\n”;
# prints last element, Justin



Converting scalars to arrays

• Can take a scalar (like a text string) and 
split it into components (like individual 
words) and place them in an array

• Most frequently split using spaces or 
commas

• Use the split() function



Scalars to arrays example
#!/usr/bin/perl

$string = "We are learning PERL";
@words = split(/ /,$string);

print "@words\n";
# prints "We are learning PERL"

print "$words[1]\n";
# prints "are"

$prime_list = "1,3,5,7,11";
@primes = split(/,/,$prime_list);

print "@primes\n";
# prints 1 3 5 7 11



Going through all elements
• “foreach” statement creates a loop that goes through all the elements in an 

array

#!/usr/bin/perl

@tasks = qw(plan simulation analysis);

$i=0;
foreach $task(@tasks) {
print "Task $i: $task\n";
$i++;

}

# prints the following:
# Task 0: plan
# Task 1: simulation
# Task 2: analysis



Copying parts of arrays
#!/usr/bin/perl

@tasks = qw(plan simulation analysis);
@priorities = @tasks[0,1];

print "Tasks are: @tasks\n";
print "Priorities are: @priorities\n";

# prints the following:
# Tasks are: plan simulation analysis
# Priorities are: plan simulation

$tasks[1] = "computation";  #changes @tasks not @priorities
print "Tasks are: @tasks\n";
print "Priorities are: @priorities\n";

# prints the following:
# Tasks are: plan computation analysis
# Priorities are: plan simulation



shift/unshift and push/pop functions

• shift() deletes the first element of the array 
and returns that value

• unshift() adds a new element or elements 
to the beginning array

• pop() deletes the last element of the array 
and returns that value

• push() adds an element or elements to the 
end of the array



Example of shift/unshift
#!/usr/bin/perl

@grades = (100, 90, 89);
print "Grades are: @grades\n";
# Grades are: 100, 90, 89

unshift(@grades,54);
print "Grades are: @grades\n";
# Grades are: 54, 100, 90, 89

$deleted = shift(@grades);
print "Deleted the grade $deleted\n";
print "Grades are now: @grades\n";
# Deleted the grade 54
# Grades are now: 100, 90, 89



Other array tricks
• Combine two arrays like

@new = (@arr1, @arr2);
• Replace an individual element like

$arr[0] = 42;
• Get the length of an array like

$len = @array;
• Take a “slice” (subset) of an array

@subset = @arr[0,5];
• Get the reverse of an array

@rev = reverse(@arr);



Sorting
• Can sort the elements of an array alphabetically; will not change the original 

array but can assign result to a new array.  $a and $b are temp strings.

@students = qw(Robert Amanda Chris Jan);
print "students are: @students\n";
# students are: Robert Amanda Chris Jan

@students1 = sort{$a cmp $b}@students;
@students2 = sort{$b cmp $a}@students;

print "students1 : @students1\n";
# students1 : Amanda Chris Jan Robert
print "students2 : @students2\n";
# students2 : Robert Jan Chris Amanda

• Could do similar thing with numbers but using {$a $b} for comparison



Part 5: Hashes



Hashes
• Key-value pairs; hash variables start with % symbol
• Very useful for keeping data from HTML forms
• Access a value by giving its associated key in curly 

brackets; the accessed value is a scalar, not a hash, so 
use $ in front

%hash = qw(first David last Sherrill);
# need slash below to distinguish the inner quotes
# in the hash lookup
# from the outer quotes of the print statement
print "first name: $hash{\"first\"}\n";
# first name: David



Slice of a hash
• Can take a slice (subset) of hash values, similar to taking 

a slice of an array.  The result is an array of hash values.
• Specify the key names of the desired elements, in 

quotes, separated by commas.  Taking an array, use 
array syntax.

%hash = qw(first David last Sherrill job Professor);

@names = @hash{"first","last"};
print "names: @names\n";
# names: David Sherrill



Getting all keys or all values
• Can get a list of all keys or all values in a hash using the keys() and 

values() functions, which take the name of the hash as the argument
• Warning: the order of the keys/values is not necessarily the same as 

the original ordering

%hash = qw(first David last Sherrill job Professor);

@karr = keys(%hash);
print "keys: @karr\n";
# keys: first last job

@varr = values(%hash);
print "values: @varr\n";
# values: David Sherrill Professor



Looping through hash elements
• Can loop through the elements of a hash using the “foreach” 

statement; like a “for” loop but goes through an array of elements
• Similar to “foreach” in shells like tcsh
• %hash = qw(first David last Sherrill job Professor);

foreach $i (keys(%hash))
{
# note: below we do $hash not %hash
print "The key is $i and the value is $hash{$i}\n";

}

# The key is first and the value is David
# The key is last and the value is Sherrill
# The key is job and the value is Professor



Deleting key/value pairs
• Can delete a pair using the “delete” statement followed by the value (a 

scalar) to delete

%hash = qw(first David last Sherrill job Professor);

delete $hash{"job"};

foreach $i (keys(%hash))
{
# note: below we do $hash not %hash
print "The key is $i and the value is $hash{$i}\n";

}

# The key is first and the value is David
# The key is last and the value is Sherrill



Does a key exist?
• Can check if a key exists in a hash using the “exist” keyword; returns 1 if exists, 

“blank” if not (can be converted to 0 when necessary)

%hash = qw(first David last Sherrill);

$check_first = exists $hash{"first"};
$check_age = exists $hash{"age"};

# "false" doesn't show up as a 0 unless "forced"
$num = ( $check_age == 0 ) ? 0 : 1;

print "Does first exist? $check_first\n";
# Does first exist? 1

print "Does age exist? $check_age\n";
# Does age exist?

print "variable num = $num\n";
# variable num = 0



Part 6: Text Files



Reading a text file
• Use “open” and “close” functions
• Need a “file handle” to represent the file
• Use equality operator to read a line or an array of (all) 

lines

# Note: file random.txt must be in same directory, or else
# must specify an absolute path

open(TXT, "<random.txt");    # open the file for reading
$line = <TXT>;                      # get the first line (note scalar)
close(TXT);                           # close file again

print "The first line of the file is: $line\n";



Reading the whole file

• To get all the lines, simply assign 
<filehandle> to an array variable

open(TXT, "<random.txt");    # open the file for reading
@lines = <TXT>;                  # get all the lines
close(TXT);                           # close file again

print "The file contains:\n";
print @lines;



Writing to a text file

• Use the > symbol in front of the filename 
to write, instead of < to read

open(TXT, ">written.txt");     # open the file for writing
print TXT "hello, testing!\n"; # write a line
print TXT "end of test.\n";    # write another line
close(TXT);                          # close file again



Appending to a text file

• To append (add to the end of an existing 
file), use the >> symbol before the 
filename instead of >

open(TXT, ">>written.txt"); # open the file for writing
print TXT "Add a line!\n";   # write an additional line
close(TXT);                        # close file again



Exclusive access

• Errors or unexpected behavior might result 
if two programs tried to write to the same 
file at the same time

• Can prevent this by putting a “lock” on the 
file, preventing other programs from 
accessing the file until the first program 
has completed the essential operation



File locking example
#!/usr/bin/perl

# Note: file testfile.txt must be in same directory, or else
# must specify an absolute path

open(FP, ">testfile.txt"); # open the file for writing
# note - not all platforms support flock()
flock(FP, 2);              # lock the file
print FP "Hello!\n";       # write a line
flock(FP, 8);              # release the file
close(FP);                 # close file again



Detecting read/write errors
• If a file operation has an error, it typically returns an error message 

to the $! variable
• This example previews subroutines

open(FP, "<junk.txt") || &pr_error($!);
@lines = <FP>;
close(FP);

foreach $line(@lines)
{
print "$line";

}

sub pr_error
{

print "Received error on opening file.\n";
print "Error message: $_[0]\n";
exit;

}



Renaming and deleting files

• To rename a file
rename(“old_filename”, “new_filename”);

• To delete a file 
(don’t use unless you’re sure!)
unlink(“file_to_delete”);



File status checks

Operator Operation

-e Does file exist?

-d Is the “file” a directory?

-r Is the file readable?

-w Is the file writable?

-x Is the file executable?



Status check example
$file = "crazy_file.txt";

# Another example of TRUE=1, FALSE=blank
# Will print blank if file doesn't exist
$e = (-e $file);
print "Variable \$e = $e\n";

# The following ? : logic still works though
print "The file $file ";
print $e ? "exists\n" : "does not exist\n";



Files in a directory
• Can get all the files in a given directory using the 

opendir() function

opendir(CDIR, ".");                       # . gives current directory
@filenames = readdir(CDIR);      # get all the filenames
@filenames = sort(@filenames); # sort them!
closedir(CDIR);

foreach $filename(@filenames)
{
print "$filename\n";

}



Selecting certain filenames
• Can use the grep() function, in conjunction with 

a “regular expression” (see later), to select only 
certain filenames

opendir(CDIR, ".");            # . gives current directory
# get only filenames ending in .txt; escape the . character
@filenames = grep( /\.txt/, readdir(CDIR));
@filenames = sort(@filenames); # sort them!
closedir(CDIR);

foreach $filename(@filenames)
{

print "$filename\n";
}



Setting permissions

• Can set the file permissions on a file or 
directory using the chmod() function which 
works like the UNIX command

Permissions Owner Group Others

0777 rwx rwx rwx

0755 rwx r-x r-x

0644 rw- r-- r--



chmod() example
if (-e "chmodtest")
{
chmod(0755, "chmodtest") || &pr_error($!);

}
else
{
print "Can't find file chmodtest\n";

}

sub pr_error
{
print "Error: $_[0]\n"; exit;

}



Making and deleting directories

• Make a directory (needs UNIX 
permissions code)
mkdir(“subdir”, 0755);

• Delete a directory
rmdir(“subdir”);

• Best to check for errors, e.g.,
rmdir(“subdir”) || &pr_error($!);



Changing working directory

• The script usually assumes it is working in the 
same directory it resides in

• This means files in other locations need to be 
addressed with full or relative paths

• Instead, can tell PERL to use a different 
“working” directory and then use “local” 
filenames

• chdir(“../docs”); # go back up to the “docs” 
directory and do all subsequent work in there


	Perl Workshop
	References
	Perl at a Glance
	Part 1: Variables and Printing
	Printing in Perl
	Scalar variables
	Scalar variable example
	Formatted output
	Array variables
	Array example
	Hash variables
	Part 2: Operators
	Arithmetic operators
	Arithmetic operators example
	Assignment operators
	Logical operators
	Example of logical operators
	Numerical comparison
	Numerical comparison example
	String comparison
	String comparison example
	String operators example
	The range operator
	Math functions
	Part 3: Loops and Conditions
	IF statements
	IF/ELSE statements
	ELSIF statements
	FOR loop
	WHILE loops
	DO/WHILE loops
	NEXT statement
	LAST statement
	Part 4: Arrays
	Working with arrays
	Array example
	Converting scalars to arrays
	Scalars to arrays example
	Going through all elements
	Copying parts of arrays
	shift/unshift and push/pop functions
	Example of shift/unshift
	Other array tricks
	Sorting
	Part 5: Hashes
	Hashes
	Slice of a hash
	Getting all keys or all values
	Looping through hash elements
	Deleting key/value pairs
	Does a key exist?
	Part 6: Text Files
	Reading a text file
	Reading the whole file
	Writing to a text file
	Appending to a text file
	Exclusive access
	File locking example
	Detecting read/write errors
	Renaming and deleting files
	File status checks
	Status check example
	Files in a directory
	Selecting certain filenames
	Setting permissions
	chmod() example
	Making and deleting directories
	Changing working directory

