next up previous
Next: Restricted Open-Shell Hartree-Fock References Up: CIS Energy Equations Previous: Restricted Hartree-Fock References

Unrestricted Hartree-Fock References

Now consider the case when $\vert \Phi_0 \rangle$ is obtained by the UHF procedure. Once again, the Fock matrix is diagonal: $F_{pq} = \delta_{pq} \epsilon_{p}$. However, it is customary to split the Fock matrix into two matrices, one for $\alpha$ and one for $\beta$ spin orbitals (mixed terms such as $F_{\overline{p}q}$ and $F_{p\overline{q}}$ are zero). As for the RHF case, $\sigma_0=0$ and $\sigma_i^a$ can be written

\begin{displaymath}\sigma_i^a = c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_j...
...{b}}
\langle a\overline{j} \vert\vert i\overline{b} \rangle.
\end{displaymath} (37)

Unfortunately, for a UHF reference equations (26)-(28) no longer hold, so that the above equation can be simplified only to

\begin{displaymath}\sigma_i^a = c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_j...
...line{j}}^{\overline{b}}
(ai \vert \overline{j}\overline{b}).
\end{displaymath} (38)

Even though spin has been integrated out, the overbars must be kept in the above equation because the spatial parts of spin orbitals i and $\overline{i}$ are not necessarily equal. An analogous equation holds for $\sigma_{\overline{i}}^{\overline{a}}$,

\begin{displaymath}\sigma_{\overline{i}}^{\overline{a}} = c_{\overline{i}}^{\ove...
...{i}) ]
+ \sum_{jb} c_j^b (\overline{a}\overline{i} \vert jb),
\end{displaymath} (39)

and there is no general relationship between $\sigma_i^a$ and $\sigma_{\overline{i}}^{\overline{a}}$. The pseudodensity matrices ${\tilde P}_{\lambda \sigma}^{\alpha}$ and ${\tilde P}_{\lambda
\sigma}^{\beta}$ are defined as in eq. (31) and (32), but they are no longer simply related. Thus it is necessary to compute two Fock-like matrices, according to
$\displaystyle {\tilde F}_{\mu \nu}^{\alpha}$ = $\displaystyle \sum_{\lambda \sigma}
\left[ (\mu \nu \vert \lambda \sigma) - (\m...
...}^{\alpha}
+ (\mu \nu \vert \lambda \sigma) {\tilde P}_{\lambda \sigma}^{\beta}$ (40)
$\displaystyle {\tilde F}_{\mu \nu}^{\beta}$ = $\displaystyle \sum_{\lambda \sigma}
\left[ (\mu \nu \vert \lambda \sigma) - (\m...
...^{\beta}
+ (\mu \nu \vert \lambda \sigma) {\tilde P}_{\lambda \sigma}^{\alpha}.$ (41)

In contrast to RCIS, there are no longer separate singlet and triplet cases, since the UCIS eigenfunctions are not CSFs. After transforming to the MO basis by
$\displaystyle {\tilde F}_{ia}^{\alpha}$ = $\displaystyle \sum_{\mu \nu}
C_{\mu a}^* {\tilde F}_{\mu \nu}^{\alpha} C_{\nu i}$ (42)
$\displaystyle {\tilde F}_{\overline{i}\overline{a}}^{\beta}$ = $\displaystyle \sum_{\mu \nu}
C_{\mu \overline{a}}^* {\tilde F}_{\mu \nu}^{\beta}
C_{\nu \overline{i}},$ (43)

the expressions for ${\mathbf \sigma}$ become
$\displaystyle \sigma_i^a({\rm UCIS})$ = $\displaystyle c_i^a(\epsilon_a - \epsilon_i) + {\tilde
F}_{ia}^{\alpha}$ (44)
$\displaystyle \sigma_{\overline{i}}^{\overline{a}}({\rm UCIS})$ = $\displaystyle c_{\overline{i}}^{\overline{a}}
(\epsilon_{\overline{a}} - \epsilon_{\overline{i}})
+ {\tilde F}_{\overline{i}\overline{a}}^{\beta}.$ (45)


next up previous
Next: Restricted Open-Shell Hartree-Fock References Up: CIS Energy Equations Previous: Restricted Hartree-Fock References
C. David Sherrill
2000-04-18